
Strengthening the Base for a more robust Rust SDK
Matrix Conference 2024

mx: @benjib:element.io

1



● Benjamin “bnjbvr” Bouvier

● Software engineer in Rust team @ Element

● Previously at Embark Studios as Game Engine 
Hacker

● Previously at Mozilla as Compiler Engineer 
(Spidermonkey/Wasmtime)

● Other: Framasoft, cargo-machete, kresus, rouille…

2

Who’s that guy?



● Rust client-server API library

● github.com/matrix-org/matrix-rust-sdk

● Apache 2.0 license

● Everything one would expect from a 
Matrix client
○ logging in, out, reading/writing settings…

○ sending and receiving events

○ listening to sync updates and reacting to 
specific events via handlers

● End-to-end encryption comes for free!

3

The Rust SDK

Logo made by Ursa Johnson 🙏

https://github.com/matrix-org/matrix-rust-sdk


A history of the Matrix Rust SDK

4

November 2015 October 2019 December 2021



● Pleasantly high-level and fast by default

● Small memory footprint

● Secure, memory-safe
○ Thanks to the ownership model

● Amazing tooling and ecosystem 🥰
● Compatible with FFIs using the C ABI

● Empowerment!

5

Why Rust?

Picture by @aldeka@wandering.shop



Fearless concurrency!

6

Why Rust?

● Ownership model helps 
modeling concurrent 
ownership too.

● No data races by default.
● The ecosystem is going 

strong on asynchronicity.



Why the Rust SDK?

● Everything is reusable
○ a single crypto stack!

● High test coverage, fuzzing, 
benchmarking…

● A central place where to add 
features and fix bugs.

Fig 1: Figuring out SDKs at Element



● Fractal, a GTK client

● iamb, a TUI client

● Robrix, a Desktop client

● ElementX apps

● ElementR (previous generation)

8

Who’s using it?



● What’s the goal of the SDK? 

9

Improving the Foundation

● Receiving events: Simplified Sliding Sync, Event Cache

● Sending events: Send Queue

● With encryption “for free”: robust crypto



New synchronization protocols to receive events from the 
server.

● Goal: near-instantaneous synchronization, independently of 
the account’s size.
○ Load incremental batches of rooms in the room list

● Sliding sync (MSC3575): a successful experiment 🧪
● Simplified sliding sync (MSC4186):

○ Simpler & better: rooms are sorted client-side
○ in Synapse and Rust SDK today 🎉

● More details at Ivan’s talk, tomorrow at 10am.

10

Receiving events: simplified sliding sync

https://github.com/matrix-org/matrix-spec-proposals/blob/kegan/sync-v3/proposals/3575-sync.md
https://github.com/matrix-org/matrix-spec-proposals/pull/4186


● Observable store of events coming from any source (sync, 
pagination,…).

● Extra processing on those events: figures out read receipts, 
unread counts, retry decryption, etc.

● In-memory for now.
○ Efficient memory representation.

● Still a work-in-progress. In the future:
○ Persist events on disk.
○ Deduplicate events based on their orderings.

■ What’s the right ordering? Topological? Sync? MSC4033?

○ Connect together islands of disjoint timelines.
11

Storing events: the Event Cache

https://github.com/matrix-org/matrix-spec-proposals/pull/4033


● Full rewrite of the send mechanism we had.
● Highly tested in isolation.
● Pending messages are observable via updates

○ Local echoes = displayed before sent to the Matrix server.

● Full of useful features:
○ Queue messages while offline
○ Save pending messages on disk
○ Edit/abort/react to pending messages

■ And always do the Right Thing™

○ Automatically retry sending if network’s stuttering
■ And stop if wedged for any reason
■ Manually retry sending too

● Paves the way for more “local” echoes (media uploads, etc.). 12

Sending events: a Send Queue



● Anna Karenina Principle

“All happy families are alike; each unhappy family 
is unhappy in its own way.”

— Leo Tolstoï, Anna Karenina

13

Tech is boring, let’s talk literature now



● Anna Karenina Principle

“All happy families are alike; each unhappy family 
is unhappy in its own way.”

— Leo Tolstoï, Anna Karenina

• Ideally: encryption works 100% of the time.
• A complex process (like end-to-end encryption) 

that involves many complex sub-steps will fail if a 
single step fails.
• Leading to messages “unable to decrypt” (UTD)
• Resilience is learned, not a given!

14

Encryption “for free”



● Step 1: one can only improve what is observed and 
measured

● UTD Hook: new SDK component to keep track of UTDs
○ Observes UTDs and events decrypted “late” (transient UTDs)
○ Deduplicates them
○ Used for telemetry purposes:

■ How does the ratio of UTDs vs non-UTDs evolve over time?
■ How does a fix impact this ratio?

15

The UTD Hunt



● Step 2: investigate and fix the UTDs
○ Gigantic work by the crypto team at Element!

● Two real-world examples (no crypto knowledge involved)
○ To know who to send keys to, one must know who’s in the room
○ Send an initial /members request on the Matrix server and update 

based on subsequent m.room.member events.
○ What if this initial request failed and…

■ it’s never retried?
■ and a concurrent observer waited for it and assumed it succeeded?

● More at Kegan’s talk, tomorrow at 2:30pm.

16

The UTD Hunt



● Goal: hold a cryptographic proof that the sender of a 

message is who they claim they are

● The gist:

○ mandate users to sign their devices with the cross-signing key

○ limit sending to a user who hasn’t done that yet

○ ignore any message received from an insecure device

○ transition period: show insecure badge

○ plan and implementation still in flux

● More on Valere’s talk today at 2:15pm.
17

Invisible Crypto (MSC4153)

https://github.com/matrix-org/matrix-spec-proposals/pull/4153


● Long-standing project to move from the custom Matrix 
authentication system to OpenId Connect

○ See also areweoidcyet.com

● Works with a Matrix Authentication Service

○ actual OIDC provider and/or specialized proxy to upstream 
provider

○ also written in Rust: reusing code is possible

● Full support in the SDK, including login via QR code

○ super nice UX!

○ cross-signing key and key backup for free!

● experimental-oidc Cargo feature
18

OIDC support and QR code login

https://areweoidcyet.com/
https://github.com/matrix-org/matrix-authentication-service


● A single service that spawns multiple syncs: one for encryption, one for 
room events.

● Goal: retrieve the simplicity of “fire the sync and forget about it”.

○ Minimal setup to benefit from all the best UX practices + best 
performance using simplified sliding sync!

19

High-level components: Sync service

https://docs.rs/matrix-sdk-ui/latest/matrix_sdk_ui/sync_service/index.html


● Now that we have a list of rooms and decrypted events, how do we 
display them?

● Enter the Timeline API!

● Room view MVC on steroids!

● Related events are aggregated into a single timeline item (reaction, read 
receipts, updates, redaction, etc.).

● Everything is observable in a reactive way.

○ Notifies when an item has been added/removed/updated.

● Recent developments: focus on a particular event (e.g. permalink), or 
only the pinned events.

20

High-level components: Timeline

https://docs.rs/matrix-sdk-ui/latest/matrix_sdk_ui/timeline/struct.Timeline.html


● Using Mozilla’s UniFFI, an automated bindings 
generator for Rust to and from other languages

○ FFI = Foreign Function Interface

● We generate bindings for Swift (iOS) and Kotlin 
(Android)

○ UniFFI can also generate bindings for 
Python and Go

● Requires integration with the foreign language’s 
runtimes

● We added support for async code!

○ Simpler concurrent/background processing

21

How is this all used in ElementX?

https://github.com/mozilla/uniffi-rs


22

A slightly disorienting yet complete map



● Principle: notify subscribers whenever an object / vector has 
changed.

● Eyeball, one of our contributions to the Rust ecosystem.

● Eyeball-im: Diff based extension for collections.

○ only notify about the added/removed/updated item, not the 
entire collection.

● Extra querying facilities

○ batching, transactions

○ filtering, limiting

○ sorting

23

Appendix: Reactive programming in Rust

https://github.com/jplatte/eyeball/


● Starting from September 1st, 2023
● 2884 commits from 1115 pull requests
● From 47 contributors

○ 14 of them did 10+ PRs (incl. 1 external 
contributor)

○ 7 with 50+ PRs (incl. same person)
○ 4 with 100+ PRs (all Element)

24

Some contribution stats 📈



● Thanks to all the contributors of the Rust SDK!
○ Shoutout to Kevin Commaille from 

Gnome/Fractal 💪
○ You can contribute too!

● Thanks to all who helped fund this work!

25

A big thank you!

https://github.com/matrix-org/matrix-rust-sdk/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/matrix-org/matrix-rust-sdk/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22


mx room: #matrix-rust-sdk:matrix.org
github.com/matrix-org/matrix-rust-sdk 
mx: @benjib:element.io

26

Thank you for listening!

Questions?

Fig 1: people asking questions about the Rust SDK.
Photo by Raphael Bick on Unsplash 

https://github.com/matrix-org/matrix-rust-sdk
https://unsplash.com/@picturejourneys?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/crabs-near-seashore-gm5iCSYrLpQ?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

